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• Python Examples
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This Tutorial is only the beginning. Some Examples of Tutorials that goes more in depth:
• Transfer Functions with Python
• State-space Models with Python
• Frequency Response with Python
• PID Control with Python
• Stability Analysis with Python
• Frequency Response Stability Analysis with Python
• Logging Measurement Data to File with Python
• Control System with Python 

– Exemplified using Small-scale Industrial Processes and Simulators

• DAQ Systems
• etc.

Additional Tutorials/Videos/Topics

https://www.halvorsen.blog/documents/programming/python/

Videos available 
on YouTube

https://www.halvorsen.blog/documents/programming/python/
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Python Libraries



NumPy, Matplotlib
• In addition to Python itself, the 

Python libraries NumPy, Matplotlib is 
typically needed in all kind of 
application
• If you have installed Python using the 

Anaconda distribution, these are 
already installed



• An alternative to The Python Control Systems Library is 
SciPy.signal, i.e. the Signal Module in the SciPy Library

• https://docs.scipy.org/doc/scipy/reference/signal.html

SciPy.signal

With SciPy.signal you can 
create Transfer Functions, 
State-space Models, you can 
simulate dynamic systems, do 
Frequency Response Analysis, 
including Bode plot, etc.

https://docs.scipy.org/doc/scipy/reference/signal.html


• The Python Control Systems Library (control) is a 
Python package that implements basic operations 
for analysis and design of feedback control systems.

• Existing MATLAB user? The functions and the 
features are very similar to the MATLAB Control 
Systems Toolbox.

• Python Control Systems Library Homepage: 
https://pypi.org/project/control

• Python Control Systems Library Documentation: 
https://python-control.readthedocs.io

Python Control Systems Library

https://pypi.org/project/control
https://python-control.readthedocs.io/
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Control Engineering



Control System

Controller Process

Sensors

Actuators

Filtering
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𝑦

The Controller is 
typically a PID Controller



Control System
• 𝑟 – Reference Value, SP (Set-point), SV (Set Value)
• 𝑦 – Measurement Value (MV), Process Value (PV)
• 𝑒 – Error between the reference value and the 

measurement value (𝑒 = 𝑟 – 𝑦)
• 𝑣 – Disturbance, makes it more complicated to control 

the process
• 𝑢 - Control Signal from the Controller



The PID Algorithm

Tuning Parameters:

𝐾!
𝑇"
𝑇#

Where 𝑢 is the controller output and 𝑒 is the 
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point
𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'�̇�

Proportional Gain

Integral Time [sec. ]

Derivative Time [sec. ]



The PID Algorithm

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'�̇�

P I D
Proportional Gain Integral Time Derivative Time

𝐾% 𝑇& 𝑇'Tuning Parameters:
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Dynamic Systems and 
Differential Equations



• The purpose with a Control System is to Control a Dynamic 
System, e.g., an industrial process, an airplane, a self-driven 
car, etc. (a Control System is “everywhere“).

• Typically, we start with a Mathematical model of such as 
Dynamic System

• The mathematical model of such a system can be
– A Differential Equation
– A Transfer Function
– A State-space Model

• We use the Mathematical model to create a Simulator of 
the system

Dynamic Systems and Models



�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)

Where 𝐾 is the Gain and 𝑇 is the Time constant

�̇� = 𝑎𝑦 + 𝑏𝑢 Dynamic 
System𝑢(𝑡) 𝑦(𝑡)

Assume the following general Differential Equation:

or:

Where 𝑎 = − !
"

and 𝑏 = #
"

This differential equation represents a 1. order dynamic system

Assume 𝑢(𝑡) is a step (𝑈), then we can find that the solution to the differential equation is:

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒$
%
")

Input Signal Output Signal

1.order Dynamic System

(we use Laplace)



import numpy as np
import matplotlib.pyplot as plt

K = 3
T = 4
start = 0
stop = 30
increment = 0.1
t = np.arange(start,stop,increment)

y = K * (1-np.exp(-t/T))

plt.plot(t, y)
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t) ')
plt.grid()

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒/
0
1)

We start by plotting the following:

In the Python code we can set:

𝑈 = 1
𝐾 = 3
𝑇 = 4

Python



Comments
We have many different options when it comes to simulation a Dynamic 
System:
• We can solve the differential Equation(s) and then implement the the 

algebraic solution and plot it. 
– This solution may work for simple systems. For more complicated 

systems it may be difficult to solve the differential equation(s) by 
hand

• We can use one of the “built-in” ODE solvers in Python
• We can make a Discrete version of the system
• We can convert the differential equation(s) to Transfer Function(s)
• etc.

We will demonstrate and show examples of all these approaches



Python
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

# Initialization
K = 3
T = 4
u = 1
tstart = 0
tstop = 25
increment = 1
y0 = 0
t = np.arange(tstart,tstop+1,increment)

# Function that returns dx/dt
def system1order(y, t, K, T, u):    

dydt = (1/T) * (-y + K*u)
return dydt

# Solve ODE
x = odeint(system1order, y0, t, args=(K, T, u))
print(x)

# Plot the Results
plt.plot(t,x)
plt.title('1.order System dydt=(1/T)*(-y+K*u)')
plt.xlabel('t')
plt.ylabel('y(t)')
plt.grid()
plt.show()

�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)

In the Python code we can set:
𝐾 = 3
𝑇 = 4

Differential Equation: Using ODE Solver



�̇� = 𝑎𝑦 + 𝑏𝑢
We start with the differential equation:

We can use the Euler forward method:

�̇� ≈
𝑦456 − 𝑦4

𝑇7
This gives:

8!"#/8!
1$

= 𝑎𝑦4 + 𝑏𝑢4

This gives the following discrete differential 
equation:

𝑦456 = 𝑦4 + 𝑇7 𝑎𝑦4 + 𝑏𝑢4

Further we get:

𝑦456 = 𝑦4 + 𝑇7𝑎𝑦4+ 𝑇7𝑏𝑢4

𝑦$%& = (1 + 𝑇'𝑎)𝑦$+ 𝑇'𝑏𝑢$

Discretization



Python
import numpy as np
import matplotlib.pyplot as plt

# Model Parameters
K = 3
T = 4

a = -1/T
b = K/T

# Simulation Parameters
Ts = 0.1
Tstop = 30
uk = 1 # Step Response
yk = 0 # Initial Value
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

# Simulation
for k in range(N):

yk1 = (1 + a*Ts) * yk + Ts * b * uk
yk = yk1
data.append(yk1)

# Plot the Simulation Results
t = np.arange(0,Tstop+Ts,Ts)

plt.plot(t,data)
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Where 𝑎 = − !
"

and 𝑏 = #
"

𝑦()* = (1 + 𝑇+𝑎)𝑦(+ 𝑇+𝑏𝑢(

In the Python code we can set:

Let's simulate the discrete system:

𝐾 = 3
𝑇 = 4
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Transfer Functions



• Transfer functions are a model form 
based on the Laplace transform. 
• Transfer functions are very useful in 

analysis and design of linear dynamic 
systems.
• You can create Transfer Functions both 

with SciPy.signal and the Python Control 
Systems Library 

Transfer Functions



1.order Transfer Functions

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝐾

𝑇𝑠 + 1

A 1.order transfer function is given by:

Where 𝐾 is the Gain and 𝑇 is the Time constant
In the time domain we get the following 
equation (using Inverse Laplace):

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒(
)
*)

(After a Step 𝑈 for the unput signal 𝑢(𝑠))

𝐻 𝑠𝑢(𝑠) 𝑦(𝑠)
Input Signal Output Signal

�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)Differential 

Equation

We ca find the Transfer function from 
the Differential Equation using Laplace



1.order – Step Response
100%

63%

𝐾𝑈

𝑡
𝑇

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒/
0
1)

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝐾

𝑇𝑠 + 1

𝑦(𝑡)



Python

𝐻(𝑠) =
3

4𝑠 + 1

import control
import numpy as np
import matplotlib.pyplot as plt

K = 3
T = 4
num = np.array([K])
den = np.array([T , 1])

H = control.tf(num , den)
print ('H(s) =', H)

t, y = control.step_response(H)

plt.plot(t,y)
plt.title("Step Response")
plt.grid()

Transfer Function:
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State-space Models

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

A general State-space Model is given by:

𝑥
𝑦𝑢

Input OutputInternal 
States

System

• A state-space model is a structured form or representation of a set of differential 
equations. State-space models are very useful in Control theory and design. The 
differential equations are converted in matrices and vectors.

• You can create State.space Models both with SciPy.signal and the Python Control Systems 
Library 

Note that �̇� is the same as  
!"
!#

𝐴, 𝐵, 𝐶 and 𝐷 are matrices
𝑥, �̇�, 𝑢, 𝑦 are vectors



Basic Example
�̇�& = 𝑥+
�̇�+ = −𝑥+ + 𝑢
𝑦 = 𝑥&

Given the following System:

This gives the following State-space Model:

�̇�*
�̇�,

= 0 1
0 −1

𝑥*
𝑥, + 0

1 𝑢

𝑦 = 1 0
𝑥*
𝑥,

Where: 

𝐴 = 0 1
0 −1 𝐵 = 0

1

𝐶 = 1 0 𝐷 = 0

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

We want to put the equations on the following form:

�̇� = �̇�!
�̇�&

𝑥 =
𝑥!
𝑥&



Python
import scipy.signal as sig
import matplotlib.pyplot as plt
import numpy as np

#Simulation Parameters
x0 = [0,0]

start = 0
stop = 30
step = 1
t = np.arange(start,stop,step)

K = 3
T = 4

# State-space Model
A = [[-1/T, 0], 

[0, 0]]
B = [[K/T], 

[0]]
C = [[1, 0]]
D = 0

sys = sig.StateSpace(A, B, C, D)

# Step Response
t, y = sig.step(sys, x0, t)

# Plotting
plt.plot(t, y)
plt.title("Step Response")
plt.xlabel("t")
plt.ylabel("y")
plt.grid()
plt.show()

�̇�!
�̇�&

= −
1
𝑇 0
0 0

𝑥!
𝑥& +

𝐾
𝑇
0
𝑢

𝑦 = 1 0
𝑥!
𝑥&

�̇�! =
1
𝑇 −𝑥! + 𝐾𝑢

�̇�& = 0

We have the differential equations:

The State-space Model becomes:

t, y = sig.step(sys, x0, t)
Here we use the following function:

𝑦 = 𝑥!



Python
import scipy.signal as sig
import matplotlib.pyplot as plt
import numpy as np

#Simulation Parameters
x0 = [0,0]
start = 0; stop = 30; step = 1
t = np.arange(start,stop,step)
K = 3; T = 4

# State-space Model
A = [[-1/T, 0], 

[0, 0]]
B = [[K/T], 

[0]]
C = [[1, 0]]
D = 0

sys = sig.StateSpace(A, B, C, D)

H = sys.to_tf()

print(H)

# Step Response
t, y = sig.step(H, x0, t)

# Plotting
plt.plot(t, y)
plt.title("Step Response")
plt.xlabel("t"); plt.ylabel("y")
plt.grid()
plt.show()

�̇�!
�̇�"

= −
1
𝑇 0
0 0

𝑥!
𝑥" +

𝐾
𝑇
0
𝑢

𝑦 = 1 0
𝑥!
𝑥"

State-space Model:

We want to find the Transfer Function:

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

TransferFunctionContinuous(
array([0.75, 0.  ]),
array([1.  , 0.25, 0.  ]),
dt: None)

𝐻(𝑠) =
3

4𝑠 + 1𝐻(𝑠) =
0.75

𝑠 + 0.25

Python give us the following:

Which is the same as
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Frequency Response



• The Frequency Response is an important tool for 
Analysis and Design of signal filters and for 
analysis and design of Control Systems

• The frequency response can be found from a 
transfer function model

• The Bode diagram gives a simple Graphical 
overview of the Frequency Response for a given 
system

• The Bode Diagram is tool for Analyzing the 
Stability properties of the Control System.

Frequency Response



Python
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

# Define Transfer Function
num1 = np.array([3])
num2 = np.array([2, 1])
num = np.convolve(num1, num2)

den1 = np.array([3, 1])
den2 = np.array([5, 1])
den = np.convolve(den1, den2)

H = signal.TransferFunction(num, den)
print ('H(s) =', H)

# Frequencies
w_start = 0.01
w_stop = 10
step = 0.01
N = int ((w_stop-w_start )/step) + 1
w = np.linspace (w_start , w_stop , N)

# Bode Plot
w, mag, phase = signal.bode(H, w)

plt.figure()
plt.subplot (2, 1, 1)
plt.semilogx(w, mag)    # Bode Magnitude Plot
plt.title("Bode Plot")
plt.grid(b=None, which='major', axis='both')
plt.grid(b=None, which='minor', axis='both')
plt.ylabel("Magnitude (dB)")

plt.subplot (2, 1, 2)
plt.semilogx(w, phase)  # Bode Phase plot
plt.grid(b=None, which='major', axis='both')
plt.grid(b=None, which='minor', axis='both')
plt.ylabel("Phase (deg)")
plt.xlabel("Frequency (rad/sec)")
plt.show()

𝐻 𝑠 =
3(2𝑠 + 1)

(3𝑠 + 1)(5𝑠 + 1)

Transfer Function Example:

SciPy.signal



Python
import numpy as np
import control

# Define Transfer Function
num1 = np.array([3])
num2 = np.array([2, 1])
num = np.convolve(num1, num2)

den1 = np.array([3, 1])
den2 = np.array([5, 1])
den = np.convolve(den1, den2)

H = control.tf(num, den)
print ('H(s) =', H)

# Bode Plot
control.bode(H, dB=True)

𝐻 𝑠 =
3(2𝑠 + 1)

(3𝑠 + 1)(5𝑠 + 1)

Transfer Function Example:

Python Control Systems Library
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Control System

Controller Process
𝑟 𝑢𝑒

−
Reference 
Value

Control 
Signal𝑦

𝑦
PID Controller

The purpose with a Control System is to Control a Dynamic System, e.g., an industrial 
process, an airplane, a self-driven car, etc. (a Control System is “everywhere“).



• The PID Controller is the most used 
controller today
• It is easy to understand and 

implement
• There are few Tuning Parameters 

PID



The PID Algorithm

Tuning Parameters:

𝐾!
𝑇"
𝑇#

Where 𝑢 is the controller output and 𝑒 is the 
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point
𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'�̇�

Proportional Gain

Integral Time [sec. ]

Derivative Time [sec. ]



Discrete PI Controller

𝑢 𝑡 = 𝐾!𝑒 +
𝐾!
𝑇"
>
#

$
𝑒𝑑𝜏

We start with the continuous PI Controller:

�̇� ≈
𝑥 𝑘 − 𝑥 𝑘 − 1

𝑇%

We can use the Euler Backward Discretization method: 

Where 𝑇' is the Sampling Time

Then we get:

𝑢& − 𝑢&'(
𝑇%

= 𝐾!
𝑒& − 𝑒&'(

𝑇%
+
𝐾!
𝑇"
𝑒&

We derive both sides in order to remove 
the Integral:

�̇� = 𝐾(�̇� +
𝐾(
𝑇)
𝑒

Finally, we get:

𝑢4 = 𝑢4/6 + 𝐾C 𝑒4 − 𝑒4/6 +
𝐾C
𝑇D
𝑇7𝑒4

Where 𝑒* = 𝑟* − 𝑦*



Control System Simulations

𝑦()* = (1 + 𝑇+𝑎)𝑦(+ 𝑇+𝑏𝑢(

PI Controller:

Process (1.order system):

�̇� = 𝑎𝑦 + 𝑏𝑢
Where 𝑎 = − !

"
and 𝑏 = #

"

Discrete Version (Ready to implement in Python):

In the Python code we can set 𝐾 = 3 and 𝑇 = 4

𝑢4 = 𝑢4/6 + 𝐾C 𝑒4 − 𝑒4/6 +
𝐾C
𝑇D
𝑇7𝑒4

𝑒4 = 𝑟4 − 𝑦4𝑢 𝑡 = 𝐾,𝑒 +
𝐾,
𝑇-
(
.

/
𝑒𝑑𝜏

Discrete Version (Ready to implement in Python):



Python
# Plot Process Value
plt.figure(1)
plt.plot(t,y)

# Formatting the appearance of the Plot
plt.title('Control of Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y')
plt.grid()
xmin = 0
xmax = Tstop
ymin = 0
ymax = 8
plt.axis([xmin, xmax, ymin, ymax])
plt.show()

# Plot Control Signal
plt.figure(2)
plt.plot(t,u)

# Formatting the appearance of the Plot
plt.title('Control Signal')
plt.xlabel('t [s]')
plt.ylabel('u [V]')
plt.grid()

import numpy as np
import matplotlib.pyplot as plt

# Model Parameters
K = 3
T = 4
a = -(1/T)
b = K/T

# Simulation Parameters
Ts = 0.1 # Sampling Time
Tstop = 20 # End of Simulation Time
N = int(Tstop/Ts) # Simulation length
y = np.zeros(N+2) # Initialization the Tout vector
y[0] = 0 # Initial Vaue

# PI Controller Settings
Kp = 0.5
Ti = 5

r = 5 # Reference value
e = np.zeros(N+2) # Initialization
u = np.zeros(N+2) # Initialization

# Simulation
for k in range(N+1):

e[k] = r - y[k]
u[k] = u[k-1] + Kp*(e[k] - e[k-1]) + (Kp/Ti)*Ts*e[k]
y[k+1] = (1+Ts*a)*y[k] + Ts*b*u[k]

# Plot the Simulation Results
t = np.arange(0,Tstop+2*Ts,Ts) #Create the Time Series



Python
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Stability Analysis

𝑡 𝑡

lim
$→*

𝑦 𝑡 = ∞

𝑡

0 < lim
$→*

𝑦 𝑡 < ∞lim
$→*

𝑦 𝑡 = 𝑘

Re

ImPoles:

Step Response:

Re

Im

Re

Im

Frequency Response:
𝜔+ < 𝜔(,# 𝜔+ > 𝜔(,#𝜔+ = 𝜔(,#

Asymptotically Stable System Marginally Stable System Unstable System



Stability Analysis Example

Controller Process
𝑟 𝑢𝑒

−
𝑦F

𝑥
𝐻! 𝑠 =

3
4𝑠 + 1𝐻+ 𝑠 =

𝐾!(𝑇"𝑠 + 1)
𝑇"𝑠

Loop Transfer Function: 𝐿 𝑠 = 𝐻+(𝑠)𝐻!(𝑠)𝐻-(𝑠)𝐻.(𝑠)

Tracking Transfer Function: 𝑇(𝑠) = /(%)
2(%)

= 3(%)
(43(%)

In Stability Analysis we use the following Transfer Functions:

Filter

𝐻- 𝑠 =
1

𝑇-𝑠 + 1

Sensor
𝐻. 𝑠 =

1
𝑇.𝑠 + 1



import numpy as np
import matplotlib.pyplot as plt
import control

# Transfer Function Process
K = 3; T = 4
num_p = np.array ([K])
den_p = np.array ([T , 1])
Hp = control.tf(num_p , den_p)
print ('Hp(s) =', Hp)

# Transfer Function PI Controller
Kp = 0.4
Ti = 2
num_c = np.array ([Kp*Ti, Kp])
den_c = np.array ([Ti , 0])
Hc = control.tf(num_c, den_c)
print ('Hc(s) =', Hc)

# Transfer Function Measurement
Tm = 1
num_m = np.array ([1])
den_m = np.array ([Tm , 1])
Hm = control.tf(num_m , den_m)
print ('Hm(s) =', Hm)

# Transfer Function Lowpass Filter
Tf = 1
num_f = np.array ([1])
den_f = np.array ([Tf , 1])
Hf = control.tf(num_f , den_f)
print ('Hf(s) =', Hf)

# The Loop Transfer function
L = control.series(Hc, Hp, Hf, Hm)
print ('L(s) =', L)

# Tracking transfer function
T = control.feedback(L,1)
print ('T(s) =', T)

# Step Response Feedback System (Tracking System)
t, y = control.step_response(T)
plt.figure(1)
plt.plot(t,y)
plt.title("Step Response Feedback System T(s)")
plt.grid()

# Bode Diagram with Stability Margins
plt.figure(2)
control.bode(L, dB=True, deg=True, margins=True) 

# Poles and Zeros
control.pzmap(T)
p = control.pole(T)
z = control.zero(T)
print("poles = ", p)

# Calculating stability margins and crossover frequencies
gm , pm , w180 , wc = control.margin(L)

# Convert gm to Decibel
gmdb = 20 * np.log10(gm)

print("wc =", f'{wc:.2f}', "rad/s")
print("w180 =", f'{w180:.2f}', "rad/s")

print("GM =", f'{gm:.2f}')
print("GM =", f'{gmdb:.2f}', "dB")
print("PM =", f'{pm:.2f}', "deg")

# Find when Sysem is Marginally Stable (Kritical Gain - Kc)
Kc = Kp*gm
print("Kc =", f'{Kc:.2f}')



Results

Poles

Frequency Response

Step Response

As you see we have an Asymptotically Stable System
The Critical Gain is 𝐾+ = 𝐾( × Δ𝐾 = 1.43

Gain Margin (GM): Δ𝐾 ≈ 11. 𝑑𝐵
Phase Margin (PM): φ ≈ 30°

This means that we can increase 
𝐾# a bit without problem

𝐾( = 0.4
𝑇) = 2𝑠



Conclusions
We have an Asymptotically Stable System when 𝐾! < 𝐾+
• We have Poles in the left half plane
• lim

$→*
𝑦 𝑡 = 1 (Good Tracking)

• 𝜔+ < 𝜔(,#
We have a Marginally Stable System when 𝐾! = 𝐾+
• We have Poles on the Imaginary Axis
• 0 < lim

$→*
𝑦 𝑡 < ∞

• 𝜔+ = 𝜔(,#
We have an Unstable System when 𝐾! > 𝐾+
• We have Poles in the right half plane
• lim

$→*
𝑦 𝑡 = ∞

• 𝜔+ > 𝜔(,#



Want to learn more? Some Examples:
• Transfer Functions with Python
• State-space Models with Python
• Frequency Response with Python
• PID Control with Python
• Stability Analysis with Python
• Frequency Response Stability Analysis with Python
• Logging Measurement Data to File with Python
• Control System with Python – Exemplified using Small-scale 

Industrial Processes and Simulators
• DAQ Systems
• etc.

Additional Tutorials/Videos/Topics

https://www.halvorsen.blog/documents/programming/python/

Videos available 
on YouTube

https://www.halvorsen.blog/documents/programming/python/


Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/
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