
Hans-Petter Halvorsen

https://www.halvorsen.blog

Python for Control
Engineering

https://www.halvorsen.blog/documents/programming/python/

Free Textbook with lots of Practical Examples

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

• Introduction to Control Engineering
• Python Libraries useful in Control

Engineering Applications
–NumPy, Matplotlib
– SciPy (especially scipy.signal)
– Python Control Systems Library (control)

• Python Examples
• Additional Tutorials/Videos/Topics

Contents

This Tutorial is only the beginning. Some Examples of Tutorials that goes more in depth:
• Transfer Functions with Python
• State-space Models with Python
• Frequency Response with Python
• PID Control with Python
• Stability Analysis with Python
• Frequency Response Stability Analysis with Python
• Logging Measurement Data to File with Python
• Control System with Python

– Exemplified using Small-scale Industrial Processes and Simulators

• DAQ Systems
• etc.

Additional Tutorials/Videos/Topics

https://www.halvorsen.blog/documents/programming/python/

Videos available
on YouTube

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Libraries

NumPy, Matplotlib
• In addition to Python itself, the

Python libraries NumPy, Matplotlib is
typically needed in all kind of
application
• If you have installed Python using the

Anaconda distribution, these are
already installed

• An alternative to The Python Control Systems Library is
SciPy.signal, i.e. the Signal Module in the SciPy Library

• https://docs.scipy.org/doc/scipy/reference/signal.html

SciPy.signal

With SciPy.signal you can
create Transfer Functions,
State-space Models, you can
simulate dynamic systems, do
Frequency Response Analysis,
including Bode plot, etc.

https://docs.scipy.org/doc/scipy/reference/signal.html

• The Python Control Systems Library (control) is a
Python package that implements basic operations
for analysis and design of feedback control systems.

• Existing MATLAB user? The functions and the
features are very similar to the MATLAB Control
Systems Toolbox.

• Python Control Systems Library Homepage:
https://pypi.org/project/control

• Python Control Systems Library Documentation:
https://python-control.readthedocs.io

Python Control Systems Library

https://pypi.org/project/control
https://python-control.readthedocs.io/

Hans-Petter Halvorsen

https://www.halvorsen.blog

Control Engineering

Control System

Controller Process

Sensors

Actuators

Filtering

𝑟 𝑢𝑒

−

𝑥

𝑣Reference
Value

Control
Signal

Noise/Disturbance

Process
Output

𝑦

The Controller is
typically a PID Controller

Control System
• 𝑟 – Reference Value, SP (Set-point), SV (Set Value)
• 𝑦 – Measurement Value (MV), Process Value (PV)
• 𝑒 – Error between the reference value and the

measurement value (𝑒 = 𝑟 – 𝑦)
• 𝑣 – Disturbance, makes it more complicated to control

the process
• 𝑢 - Control Signal from the Controller

The PID Algorithm

Tuning Parameters:

𝐾!
𝑇"
𝑇#

Where 𝑢 is the controller output and 𝑒 is the
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point
𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'�̇�

Proportional Gain

Integral Time [sec.]

Derivative Time [sec.]

The PID Algorithm

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'�̇�

P I D
Proportional Gain Integral Time Derivative Time

𝐾% 𝑇& 𝑇'Tuning Parameters:

Hans-Petter Halvorsen

https://www.halvorsen.blog

Python Examples

Hans-Petter Halvorsen

https://www.halvorsen.blog

Dynamic Systems and
Differential Equations

• The purpose with a Control System is to Control a Dynamic
System, e.g., an industrial process, an airplane, a self-driven
car, etc. (a Control System is “everywhere“).

• Typically, we start with a Mathematical model of such as
Dynamic System

• The mathematical model of such a system can be
– A Differential Equation
– A Transfer Function
– A State-space Model

• We use the Mathematical model to create a Simulator of
the system

Dynamic Systems and Models

�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)

Where 𝐾 is the Gain and 𝑇 is the Time constant

�̇� = 𝑎𝑦 + 𝑏𝑢 Dynamic
System𝑢(𝑡) 𝑦(𝑡)

Assume the following general Differential Equation:

or:

Where 𝑎 = − !
"

and 𝑏 = #
"

This differential equation represents a 1. order dynamic system

Assume 𝑢(𝑡) is a step (𝑈), then we can find that the solution to the differential equation is:

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒$
%
")

Input Signal Output Signal

1.order Dynamic System

(we use Laplace)

import numpy as np
import matplotlib.pyplot as plt

K = 3
T = 4
start = 0
stop = 30
increment = 0.1
t = np.arange(start,stop,increment)

y = K * (1-np.exp(-t/T))

plt.plot(t, y)
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t) ')
plt.grid()

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒/
0
1)

We start by plotting the following:

In the Python code we can set:

𝑈 = 1
𝐾 = 3
𝑇 = 4

Python

Comments
We have many different options when it comes to simulation a Dynamic
System:
• We can solve the differential Equation(s) and then implement the the

algebraic solution and plot it.
– This solution may work for simple systems. For more complicated

systems it may be difficult to solve the differential equation(s) by
hand

• We can use one of the “built-in” ODE solvers in Python
• We can make a Discrete version of the system
• We can convert the differential equation(s) to Transfer Function(s)
• etc.

We will demonstrate and show examples of all these approaches

Python
import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt

Initialization
K = 3
T = 4
u = 1
tstart = 0
tstop = 25
increment = 1
y0 = 0
t = np.arange(tstart,tstop+1,increment)

Function that returns dx/dt
def system1order(y, t, K, T, u):

dydt = (1/T) * (-y + K*u)
return dydt

Solve ODE
x = odeint(system1order, y0, t, args=(K, T, u))
print(x)

Plot the Results
plt.plot(t,x)
plt.title('1.order System dydt=(1/T)*(-y+K*u)')
plt.xlabel('t')
plt.ylabel('y(t)')
plt.grid()
plt.show()

�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)

In the Python code we can set:
𝐾 = 3
𝑇 = 4

Differential Equation: Using ODE Solver

�̇� = 𝑎𝑦 + 𝑏𝑢
We start with the differential equation:

We can use the Euler forward method:

�̇� ≈
𝑦456 − 𝑦4

𝑇7
This gives:

8!"#/8!
1$

= 𝑎𝑦4 + 𝑏𝑢4

This gives the following discrete differential
equation:

𝑦456 = 𝑦4 + 𝑇7 𝑎𝑦4 + 𝑏𝑢4

Further we get:

𝑦456 = 𝑦4 + 𝑇7𝑎𝑦4+ 𝑇7𝑏𝑢4

𝑦$%& = (1 + 𝑇'𝑎)𝑦$+ 𝑇'𝑏𝑢$

Discretization

Python
import numpy as np
import matplotlib.pyplot as plt

Model Parameters
K = 3
T = 4

a = -1/T
b = K/T

Simulation Parameters
Ts = 0.1
Tstop = 30
uk = 1 # Step Response
yk = 0 # Initial Value
N = int(Tstop/Ts) # Simulation length
data = []
data.append(yk)

Simulation
for k in range(N):

yk1 = (1 + a*Ts) * yk + Ts * b * uk
yk = yk1
data.append(yk1)

Plot the Simulation Results
t = np.arange(0,Tstop+Ts,Ts)

plt.plot(t,data)
plt.title('1.order Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y(t)')
plt.grid()

Where 𝑎 = − !
"

and 𝑏 = #
"

𝑦()* = (1 + 𝑇+𝑎)𝑦(+ 𝑇+𝑏𝑢(

In the Python code we can set:

Let's simulate the discrete system:

𝐾 = 3
𝑇 = 4

Hans-Petter Halvorsen

https://www.halvorsen.blog

Transfer Functions

• Transfer functions are a model form
based on the Laplace transform.
• Transfer functions are very useful in

analysis and design of linear dynamic
systems.
• You can create Transfer Functions both

with SciPy.signal and the Python Control
Systems Library

Transfer Functions

1.order Transfer Functions

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝐾

𝑇𝑠 + 1

A 1.order transfer function is given by:

Where 𝐾 is the Gain and 𝑇 is the Time constant
In the time domain we get the following
equation (using Inverse Laplace):

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒(
)
*)

(After a Step 𝑈 for the unput signal 𝑢(𝑠))

𝐻 𝑠𝑢(𝑠) 𝑦(𝑠)
Input Signal Output Signal

�̇� =
1
𝑇
(−𝑦 + 𝐾𝑢)Differential

Equation

We ca find the Transfer function from
the Differential Equation using Laplace

1.order – Step Response
100%

63%

𝐾𝑈

𝑡
𝑇

𝑦 𝑡 = 𝐾𝑈(1 − 𝑒/
0
1)

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

=
𝐾

𝑇𝑠 + 1

𝑦(𝑡)

Python

𝐻(𝑠) =
3

4𝑠 + 1

import control
import numpy as np
import matplotlib.pyplot as plt

K = 3
T = 4
num = np.array([K])
den = np.array([T , 1])

H = control.tf(num , den)
print ('H(s) =', H)

t, y = control.step_response(H)

plt.plot(t,y)
plt.title("Step Response")
plt.grid()

Transfer Function:

Hans-Petter Halvorsen

https://www.halvorsen.blog

State-space Models

State-space Models

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

A general State-space Model is given by:

𝑥
𝑦𝑢

Input OutputInternal
States

System

• A state-space model is a structured form or representation of a set of differential
equations. State-space models are very useful in Control theory and design. The
differential equations are converted in matrices and vectors.

• You can create State.space Models both with SciPy.signal and the Python Control Systems
Library

Note that �̇� is the same as
!"
!#

𝐴, 𝐵, 𝐶 and 𝐷 are matrices
𝑥, �̇�, 𝑢, 𝑦 are vectors

Basic Example
�̇�& = 𝑥+
�̇�+ = −𝑥+ + 𝑢
𝑦 = 𝑥&

Given the following System:

This gives the following State-space Model:

�̇�*
�̇�,

= 0 1
0 −1

𝑥*
𝑥, + 0

1 𝑢

𝑦 = 1 0
𝑥*
𝑥,

Where:

𝐴 = 0 1
0 −1 𝐵 = 0

1

𝐶 = 1 0 𝐷 = 0

�̇� = 𝐴𝑥 + 𝐵𝑢
𝑦 = 𝐶𝑥 + 𝐷𝑢

We want to put the equations on the following form:

�̇� = �̇�!
�̇�&

𝑥 =
𝑥!
𝑥&

Python
import scipy.signal as sig
import matplotlib.pyplot as plt
import numpy as np

#Simulation Parameters
x0 = [0,0]

start = 0
stop = 30
step = 1
t = np.arange(start,stop,step)

K = 3
T = 4

State-space Model
A = [[-1/T, 0],

[0, 0]]
B = [[K/T],

[0]]
C = [[1, 0]]
D = 0

sys = sig.StateSpace(A, B, C, D)

Step Response
t, y = sig.step(sys, x0, t)

Plotting
plt.plot(t, y)
plt.title("Step Response")
plt.xlabel("t")
plt.ylabel("y")
plt.grid()
plt.show()

�̇�!
�̇�&

= −
1
𝑇 0
0 0

𝑥!
𝑥& +

𝐾
𝑇
0
𝑢

𝑦 = 1 0
𝑥!
𝑥&

�̇�! =
1
𝑇 −𝑥! + 𝐾𝑢

�̇�& = 0

We have the differential equations:

The State-space Model becomes:

t, y = sig.step(sys, x0, t)
Here we use the following function:

𝑦 = 𝑥!

Python
import scipy.signal as sig
import matplotlib.pyplot as plt
import numpy as np

#Simulation Parameters
x0 = [0,0]
start = 0; stop = 30; step = 1
t = np.arange(start,stop,step)
K = 3; T = 4

State-space Model
A = [[-1/T, 0],

[0, 0]]
B = [[K/T],

[0]]
C = [[1, 0]]
D = 0

sys = sig.StateSpace(A, B, C, D)

H = sys.to_tf()

print(H)

Step Response
t, y = sig.step(H, x0, t)

Plotting
plt.plot(t, y)
plt.title("Step Response")
plt.xlabel("t"); plt.ylabel("y")
plt.grid()
plt.show()

�̇�!
�̇�"

= −
1
𝑇 0
0 0

𝑥!
𝑥" +

𝐾
𝑇
0
𝑢

𝑦 = 1 0
𝑥!
𝑥"

State-space Model:

We want to find the Transfer Function:

𝐻 𝑠 =
𝑦(𝑠)
𝑢(𝑠)

TransferFunctionContinuous(
array([0.75, 0.]),
array([1. , 0.25, 0.]),
dt: None)

𝐻(𝑠) =
3

4𝑠 + 1𝐻(𝑠) =
0.75

𝑠 + 0.25

Python give us the following:

Which is the same as

Hans-Petter Halvorsen

https://www.halvorsen.blog

Frequency Response

• The Frequency Response is an important tool for
Analysis and Design of signal filters and for
analysis and design of Control Systems

• The frequency response can be found from a
transfer function model

• The Bode diagram gives a simple Graphical
overview of the Frequency Response for a given
system

• The Bode Diagram is tool for Analyzing the
Stability properties of the Control System.

Frequency Response

Python
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

Define Transfer Function
num1 = np.array([3])
num2 = np.array([2, 1])
num = np.convolve(num1, num2)

den1 = np.array([3, 1])
den2 = np.array([5, 1])
den = np.convolve(den1, den2)

H = signal.TransferFunction(num, den)
print ('H(s) =', H)

Frequencies
w_start = 0.01
w_stop = 10
step = 0.01
N = int ((w_stop-w_start)/step) + 1
w = np.linspace (w_start , w_stop , N)

Bode Plot
w, mag, phase = signal.bode(H, w)

plt.figure()
plt.subplot (2, 1, 1)
plt.semilogx(w, mag) # Bode Magnitude Plot
plt.title("Bode Plot")
plt.grid(b=None, which='major', axis='both')
plt.grid(b=None, which='minor', axis='both')
plt.ylabel("Magnitude (dB)")

plt.subplot (2, 1, 2)
plt.semilogx(w, phase) # Bode Phase plot
plt.grid(b=None, which='major', axis='both')
plt.grid(b=None, which='minor', axis='both')
plt.ylabel("Phase (deg)")
plt.xlabel("Frequency (rad/sec)")
plt.show()

𝐻 𝑠 =
3(2𝑠 + 1)

(3𝑠 + 1)(5𝑠 + 1)

Transfer Function Example:

SciPy.signal

Python
import numpy as np
import control

Define Transfer Function
num1 = np.array([3])
num2 = np.array([2, 1])
num = np.convolve(num1, num2)

den1 = np.array([3, 1])
den2 = np.array([5, 1])
den = np.convolve(den1, den2)

H = control.tf(num, den)
print ('H(s) =', H)

Bode Plot
control.bode(H, dB=True)

𝐻 𝑠 =
3(2𝑠 + 1)

(3𝑠 + 1)(5𝑠 + 1)

Transfer Function Example:

Python Control Systems Library

Hans-Petter Halvorsen

https://www.halvorsen.blog

PID Control

Control System

Controller Process
𝑟 𝑢𝑒

−
Reference
Value

Control
Signal𝑦

𝑦
PID Controller

The purpose with a Control System is to Control a Dynamic System, e.g., an industrial
process, an airplane, a self-driven car, etc. (a Control System is “everywhere“).

• The PID Controller is the most used
controller today
• It is easy to understand and

implement
• There are few Tuning Parameters

PID

The PID Algorithm

Tuning Parameters:

𝐾!
𝑇"
𝑇#

Where 𝑢 is the controller output and 𝑒 is the
control error:

𝑒 𝑡 = 𝑟 𝑡 − 𝑦(𝑡)

𝑟 is the Reference Signal or Set-point
𝑦 is the Process value, i.e., the Measured value

𝑢 𝑡 = 𝐾#𝑒 +
𝐾#
𝑇$
(
%

&
𝑒𝑑𝜏 + 𝐾#𝑇'�̇�

Proportional Gain

Integral Time [sec.]

Derivative Time [sec.]

Discrete PI Controller

𝑢 𝑡 = 𝐾!𝑒 +
𝐾!
𝑇"
>
#

$
𝑒𝑑𝜏

We start with the continuous PI Controller:

�̇� ≈
𝑥 𝑘 − 𝑥 𝑘 − 1

𝑇%

We can use the Euler Backward Discretization method:

Where 𝑇' is the Sampling Time

Then we get:

𝑢& − 𝑢&'(
𝑇%

= 𝐾!
𝑒& − 𝑒&'(

𝑇%
+
𝐾!
𝑇"
𝑒&

We derive both sides in order to remove
the Integral:

�̇� = 𝐾(�̇� +
𝐾(
𝑇)
𝑒

Finally, we get:

𝑢4 = 𝑢4/6 + 𝐾C 𝑒4 − 𝑒4/6 +
𝐾C
𝑇D
𝑇7𝑒4

Where 𝑒* = 𝑟* − 𝑦*

Control System Simulations

𝑦()* = (1 + 𝑇+𝑎)𝑦(+ 𝑇+𝑏𝑢(

PI Controller:

Process (1.order system):

�̇� = 𝑎𝑦 + 𝑏𝑢
Where 𝑎 = − !

"
and 𝑏 = #

"

Discrete Version (Ready to implement in Python):

In the Python code we can set 𝐾 = 3 and 𝑇 = 4

𝑢4 = 𝑢4/6 + 𝐾C 𝑒4 − 𝑒4/6 +
𝐾C
𝑇D
𝑇7𝑒4

𝑒4 = 𝑟4 − 𝑦4𝑢 𝑡 = 𝐾,𝑒 +
𝐾,
𝑇-
(
.

/
𝑒𝑑𝜏

Discrete Version (Ready to implement in Python):

Python
Plot Process Value
plt.figure(1)
plt.plot(t,y)

Formatting the appearance of the Plot
plt.title('Control of Dynamic System')
plt.xlabel('t [s]')
plt.ylabel('y')
plt.grid()
xmin = 0
xmax = Tstop
ymin = 0
ymax = 8
plt.axis([xmin, xmax, ymin, ymax])
plt.show()

Plot Control Signal
plt.figure(2)
plt.plot(t,u)

Formatting the appearance of the Plot
plt.title('Control Signal')
plt.xlabel('t [s]')
plt.ylabel('u [V]')
plt.grid()

import numpy as np
import matplotlib.pyplot as plt

Model Parameters
K = 3
T = 4
a = -(1/T)
b = K/T

Simulation Parameters
Ts = 0.1 # Sampling Time
Tstop = 20 # End of Simulation Time
N = int(Tstop/Ts) # Simulation length
y = np.zeros(N+2) # Initialization the Tout vector
y[0] = 0 # Initial Vaue

PI Controller Settings
Kp = 0.5
Ti = 5

r = 5 # Reference value
e = np.zeros(N+2) # Initialization
u = np.zeros(N+2) # Initialization

Simulation
for k in range(N+1):

e[k] = r - y[k]
u[k] = u[k-1] + Kp*(e[k] - e[k-1]) + (Kp/Ti)*Ts*e[k]
y[k+1] = (1+Ts*a)*y[k] + Ts*b*u[k]

Plot the Simulation Results
t = np.arange(0,Tstop+2*Ts,Ts) #Create the Time Series

Python

Hans-Petter Halvorsen

https://www.halvorsen.blog

Stability Analysis

Stability Analysis

𝑡 𝑡

lim
$→*

𝑦 𝑡 = ∞

𝑡

0 < lim
$→*

𝑦 𝑡 < ∞lim
$→*

𝑦 𝑡 = 𝑘

Re

ImPoles:

Step Response:

Re

Im

Re

Im

Frequency Response:
𝜔+ < 𝜔(,# 𝜔+ > 𝜔(,#𝜔+ = 𝜔(,#

Asymptotically Stable System Marginally Stable System Unstable System

Stability Analysis Example

Controller Process
𝑟 𝑢𝑒

−
𝑦F

𝑥
𝐻! 𝑠 =

3
4𝑠 + 1𝐻+ 𝑠 =

𝐾!(𝑇"𝑠 + 1)
𝑇"𝑠

Loop Transfer Function: 𝐿 𝑠 = 𝐻+(𝑠)𝐻!(𝑠)𝐻-(𝑠)𝐻.(𝑠)

Tracking Transfer Function: 𝑇(𝑠) = /(%)
2(%)

= 3(%)
(43(%)

In Stability Analysis we use the following Transfer Functions:

Filter

𝐻- 𝑠 =
1

𝑇-𝑠 + 1

Sensor
𝐻. 𝑠 =

1
𝑇.𝑠 + 1

import numpy as np
import matplotlib.pyplot as plt
import control

Transfer Function Process
K = 3; T = 4
num_p = np.array ([K])
den_p = np.array ([T , 1])
Hp = control.tf(num_p , den_p)
print ('Hp(s) =', Hp)

Transfer Function PI Controller
Kp = 0.4
Ti = 2
num_c = np.array ([Kp*Ti, Kp])
den_c = np.array ([Ti , 0])
Hc = control.tf(num_c, den_c)
print ('Hc(s) =', Hc)

Transfer Function Measurement
Tm = 1
num_m = np.array ([1])
den_m = np.array ([Tm , 1])
Hm = control.tf(num_m , den_m)
print ('Hm(s) =', Hm)

Transfer Function Lowpass Filter
Tf = 1
num_f = np.array ([1])
den_f = np.array ([Tf , 1])
Hf = control.tf(num_f , den_f)
print ('Hf(s) =', Hf)

The Loop Transfer function
L = control.series(Hc, Hp, Hf, Hm)
print ('L(s) =', L)

Tracking transfer function
T = control.feedback(L,1)
print ('T(s) =', T)

Step Response Feedback System (Tracking System)
t, y = control.step_response(T)
plt.figure(1)
plt.plot(t,y)
plt.title("Step Response Feedback System T(s)")
plt.grid()

Bode Diagram with Stability Margins
plt.figure(2)
control.bode(L, dB=True, deg=True, margins=True)

Poles and Zeros
control.pzmap(T)
p = control.pole(T)
z = control.zero(T)
print("poles = ", p)

Calculating stability margins and crossover frequencies
gm , pm , w180 , wc = control.margin(L)

Convert gm to Decibel
gmdb = 20 * np.log10(gm)

print("wc =", f'{wc:.2f}', "rad/s")
print("w180 =", f'{w180:.2f}', "rad/s")

print("GM =", f'{gm:.2f}')
print("GM =", f'{gmdb:.2f}', "dB")
print("PM =", f'{pm:.2f}', "deg")

Find when Sysem is Marginally Stable (Kritical Gain - Kc)
Kc = Kp*gm
print("Kc =", f'{Kc:.2f}')

Results

Poles

Frequency Response

Step Response

As you see we have an Asymptotically Stable System
The Critical Gain is 𝐾+ = 𝐾(× Δ𝐾 = 1.43

Gain Margin (GM): Δ𝐾 ≈ 11. 𝑑𝐵
Phase Margin (PM): φ ≈ 30°

This means that we can increase
𝐾# a bit without problem

𝐾(= 0.4
𝑇) = 2𝑠

Conclusions
We have an Asymptotically Stable System when 𝐾! < 𝐾+
• We have Poles in the left half plane
• lim

$→*
𝑦 𝑡 = 1 (Good Tracking)

• 𝜔+ < 𝜔(,#
We have a Marginally Stable System when 𝐾! = 𝐾+
• We have Poles on the Imaginary Axis
• 0 < lim

$→*
𝑦 𝑡 < ∞

• 𝜔+ = 𝜔(,#
We have an Unstable System when 𝐾! > 𝐾+
• We have Poles in the right half plane
• lim

$→*
𝑦 𝑡 = ∞

• 𝜔+ > 𝜔(,#

Want to learn more? Some Examples:
• Transfer Functions with Python
• State-space Models with Python
• Frequency Response with Python
• PID Control with Python
• Stability Analysis with Python
• Frequency Response Stability Analysis with Python
• Logging Measurement Data to File with Python
• Control System with Python – Exemplified using Small-scale

Industrial Processes and Simulators
• DAQ Systems
• etc.

Additional Tutorials/Videos/Topics

https://www.halvorsen.blog/documents/programming/python/

Videos available
on YouTube

https://www.halvorsen.blog/documents/programming/python/

Additional Python Resources

https://www.halvorsen.blog/documents/programming/python/

https://www.halvorsen.blog/documents/programming/python/

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

